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Abstract It is demonstrated that the polarization-consistent
basis sets, which are optimized for density functional meth-
ods, are also suitable for Hartree–Fock calculations, and can
be used for estimating the Hartree–Fock basis set limit to
within a few micro-hartree accuracy. Various two- and three-
point extrapolation schemes are tested and exponential func-
tions are found to be superior compared to functions depending
on the inverse power of the highest angular momentum func-
tion in the basis set.Total energies can be improved by roughly
an order of magnitude, but atomization energies are only mar-
ginally improved by extrapolation.
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1 Introduction

The large majority of electronic structure calculations employ
an expansion of the orbitals in a basis set, almost always of the
Gaussian type and located at the nuclear positions. The basis
set incompleteness is one of the factors that limits the ultimate
accuracy, but the error can be controlled by performing cal-
culations with increasingly larger basis sets, until the desired
accuracy is obtained. For electron correlation methods, the
inherent basis set convergence is slow, but the use of hierar-
chical basis sets [1] in connection with extrapolation methods
[2] has made a large step towards solving this problem. The
basis set convergence of the Hartree–Fock (HF) and density
functional methods is significantly faster than the correlation
energy [3], and for large basis sets, the resulting error is often
assumed to be negligible. Nevertheless, if the target accuracy
is high, for example predicting molecular stabilities to within
1 kJ/mol [4], the HF error must be reduced below this limit,
which is not a trivial issue.

In recent work, we have proposed a series of basis sets
designed specifically for density functional methods, denoted
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as polarization -consistent basis sets [5,6]. The similarity of
density functional and HF methods indicates that these basis
sets should also be suitable for HF calculations, or in general,
methods where only a representation of the electron density
is required. For atoms and diatomic systems, the limiting HF
energy can be obtained by solving the integro-differential
equations by finite difference or finite elements methods [7],
and these results provide an absolute reference against which
the results from finite basis sets can be evaluated. In the pres-
ent case, we address the problem of how to estimate the HF
limit from finite basis set calculations in combination with
different extrapolation formulas.

2 Computational details

Table 1 contains 26 diatomic systems composed of first- and
second-row elements, for which we recently have reported
numerical HF results accurate to at least one micro-hartree
[8], and these results will be used as reference data for evalu-
ating the performance of various basis sets and extrapolation
schemes.

Three families of standard basis sets are used in the pres-
ent work:

1. The correlation-consistent basis sets (cc-pVXZ, X = D,
T, Q, 5, 6) developed by Dunning et al. [9]. The X nota-
tion indicates the basis set quality, D being double zeta,
T triple zeta, etc., quality. For second-row elements, the
versions employing an extra tight d-function have been
used.

2. The polarization-consistent basis set (pc-n, n = 0, 1, 2, 3,
4) in both their contracted and uncontracted forms. The –
n notation indicates the polarization beyond the isolated
atom, i.e. pc-0 contains only s- and p-functions, pc-1
contains d-functions, etc., and pc-1 is thus of double zeta
quality, pc-2 is triple zeta quality etc.

3. The SVP, TZV and QZV basis sets developed byAhlrichs
et al. [10]. These are of double, triple and quadruple zeta
quality, respectively.
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Table 1 Systems used in the present work

1CH+, 3NH, 1FH, 1C2, 2CN, 1N2, 1CO, 1NO+, 3O2,1CF+, 3NF, 1F2, 1HCl, 2CP, 1CS, 2SiN, 1NP, 3NCl,
1SiO, 3SO, 3PF, 1FCl, 1SiS, 1P2, 3S2, 1Cl2
Employed bond distances and numerical HF energies can be found in Ref. [8]

Table 2 Basis sets used in the present work

Basis set Lmax Contracted functions Primitive sp-functions

1-Row 2-Row 1-Row 2-Row

pc-0 1 3s2p 4s3p 5s3p 8s6p
pc-1 2 3s2p1d 4s3p1d 7s4p 11s8p
pc-2 3 4s3p2d1f 5s4p2d1f 10s6p 13s10p
pc-3 4 6s5p4d2f1g 6s5p4d2f1g 14s9p 17s13p
pc-4 5 8s7p6d3f2g1h 7s6p6d3f2g1h 18s11p 21s16p
pc-5a 6 22s14p9d5f3g2h1i 25s18p9d5f3g2h1i 22s14p 25s18p
cc-pVDZ 2 3s2p1d 4s3d2d 9s4p 12s8p
cc-pVTZ 3 4s3p2d1f 5s4p3d1f 10s5p 15s9p
cc-pVQZ 4 5s4p3d2f1g 6s5p4d2f1g 12s6p 16s11p
cc-pV5Z 5 6s5p4d3f2g1h 7s6p5d3f2g1h 14s8p 20s12p
cc-pV6Z 6 7s6p5d4f3g2h1i 8s7p6d4f3g2h1i 16s10p 21s14p
SVP 2 3s2p1d 4s3p1d 7s4p 10s7p
TZV 3 5s3p2d1f 5s4p2d1f 11s6p 14s9p
QZP 4 7s4p3d2f1g 9s6p4d2f1g 15s8p 20s14p
aNo contraction defined

Table 2 contains a description of these basis sets in terms
of the basis set composition and the highest angular momen-
tum (Lmax) function included.

Since the pc-n basis sets have been optimized at a den-
sity functional level, we also performed a full HF exponent
optimization of the uncontracted pc-n basis sets, denoted opt-
pc-n, and extended the series to also include a (fully opti-
mized) pc-5-type basis set. Analysis for N2 and P2 indicate
that the consistent polarization at this level is 9d5f3g2h1i, and
this is used in connection with 22s14p and 25s18p basis sets
for first- and second-row elements, respectively. No attempt
has been made to define a contraction of the pc-5 basis sets.
These results primarily serve to probe the errors related to
using standard (fixed exponent) basis sets. Calculations and
exponent optimizations have been performed with the Gauss-
ian [11] and Dalton [12] program packages. Open shell spe-
cies have been treated within the restricted open shell formu-
lation. The quality of the calculated results is quantified in
terms of the mean (〈�E〉) and standard deviation (σ) relative
to the numerical reference data (�E = Eactual − Ereference)
[8].

3 Basis set results

Table 3 shows the average errors in absolute energies rela-
tive to the numerical HF results for the basis sets in Table 2.
The (uncontracted) pc-n results display an exponential con-
vergence as a function of the highest angular momentum
function included. The corresponding contracted basis sets
(pc-nc) converge to a result a few milli-hartree above the
limit, which is due to the use of contraction coefficients
derived from density functional calculations, as discussed

elsewhere [13]. The cc-pVXZ series display a slower con-
vergence and the cc-pV6Z (Lmax = 6) basis set contains er-
rors of the order of one milli-hartree, which is of comparable
accuracy to the pc-4 (Lmax = 5) basis set. The results labeled
opt-pc-n refer to energies obtained by fully optimizing all
basis set exponents for each individual molecular system,
and are thus the best results that can be obtained with the
given basis set composition. The improvements relative to
the pc-n results are rather marginal, indicating that the den-
sity functional optimized exponents are suitable also for HF
calculations. Note also that the opt-pc-5 results are of micro-
hartree accuracy, which is essentially at the same level of
accuracy as the reference data.

4 Extrapolating functions

The use of extrapolation methods for electron correlation
energies has been able to significantly improve the raw calcu-
lated results. One of the most successful approaches is based
on the perturbation analysis of Kutzelnigg and Morgan [14],
which indicates that the leading term should be proportional
to L−3

max. Neglecting all higher order terms leads to a simple
two-point extrapolation formula, which has been used exten-
sively in connection with the cc-pVXZ basis sets.

�Ecorr (Lmax) = A + BL−3
max. (1)

The basis set convergence at the HF level has only been ana-
lyzed theoretically for the hydrogen atom, where Kutzelnigg
and Klopper showed that the convergence is exponential with
respect to the square root of the number of s-functions in-
cluded [15]. Numerical results for a few molecular systems
indicate also an exponential convergence with respect to Lmax
[3,16].
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Table 3 Average errors and standard deviations for calculated total energies

Lmax opt-pc-n pc- n pc-nc cc- pVXZ Ahlrichs

〈�E〉 σ 〈�E〉 σ 〈�E〉 σ 〈�E〉 σ 〈�E〉 σ

1 414.3 134.7 436.6 138.6 446.6 140.3
2 62.0 25.2 69.3 28.0 81.9 30.4 42.8 18.9 200.1 72.5
3 6.2 2.5 8.3 3.3 14.6 6.3 10.4 4.4 13.2 8.1
4 0.27 0.15 0.43 0.25 4.9 4.0 2.3 1.1 0.87 0.32
5 0.018 0.012 0.046 0.027 3.9 4.0 0.42 0.16
6 0.0011 0.0008 0.088 0.039

All values in milli-hartree relative to numerical HF data for the systems in Table 1
Data in italic exclude the seven triplet species in Table 1

Both exponential and inverse power functions have been
used for extrapolating to the basis set limit. Feller suggested
a three-point exponential form, which has also been used by
others [16–19].

E (Lmax) = A + Be−CLmax . (2)

The A parameter provides the limiting energy, i.e. A = E
(Lmax = ∞). Peterson et al. [20] have used the three-param-
eter exponential form shown in Eq. (3) for the H3 system.

E (Lmax) = A + Be−(Lmax−1) + Ce−(Lmax−1)2
. (3)

We have proposed an alternative exponential form for use in
connection with the pc-n basis sets, which depends also on
the number of s-functions (Ns).

E (Lmax) = A + B (Lmax + 1) e−C
√

Ns . (4)

The argumentation behind this formula is that the atomic
convergence is expected to depend on the square root of
the number of s-functions [15]. The pc-n basis sets are con-
structed such that each sub-shell included provide similar
errors, i.e. the total error relative to the basis set limit should
have (Lmax+1) terms of equal magnitude, with remaining
terms from higher L-values being significantly smaller and
thus negligible.

Martin has proposed several formulas based on an inverse
power dependence [21].

E (Lmax) = A + B
(
Lmax + 1

2

)−4

E (Lmax) = A + B
(
Lmax + 1

2

)−4 + C
(
Lmax + 1

2

)−6

E (Lmax) = A + B
(
Lmax + 1

2

)−C
.

(5)

The offset factor of half was chosen as a compromise between
values of 0 for hydrogen and 1 for first- and second- row ele-
ments. An exponent of five was used in latter work [22], and
this is also used in the CBS-APNO model [23].

E (Lmax) = A + B
(
Lmax + 1

2

)−5
. (6)

In connection with the Wn methods for estimating the infinite
basis set, infinite correlation limit, a formula with no offset
parameter was used [4].

E (Lmax) = A + BL−5
max (7)

Truhlar has used the same form with a variable exponent for
fitting the results of small basis sets to estimate the basis set
limit [24].

E (Lmax) = A + BL−C
max (8)

The optimized effective exponent has a value around four for
the HF energy.

When discussing extrapolation formulas, it may be useful
to distinguish between functional forms motivated by theo-
retical arguments, and more heuristic expressions [16,24].
The atomic correlation energy has been shown to converge
as an inverse power series in Lmax for basis sets saturated up
to angular momentum Lmax. This is not the case for molecular
calculations using e.g. the cc-pVXZ basis sets, but Eq. (1) has
nevertheless been very useful for improving the raw calcu-
lated results. The theoretical background for the convergence
rate for HF energies is less well developed, but the available
numerical evidence suggest an exponential convergence for
basis sets saturated up to angular momentum Lmax[3,16].
Again, this is not the case for standard basis sets, but exponen-
tial extrapolations are expected to perform better than inverse
power forms. From a practical point of view, however, any
extrapolation method capable of providing a reliable estimate
of the basis set limit will be useful, and inverse power forms
may fit this bill.

5 Three-point extrapolations

In the present case, we investigate the following three-point
extrapolation formulas for estimating the HF limit from re-
sults generated by the cc-pVXZ, pc-n or Ahlrichs type of
basis sets.

E (Lmax) = A + Be−CLmax (9)

E (Lmax, Ns) = A + B (Lmax + 1) e−C
√

Ns (10)

E (Lmax) = A + B (Lmax + a)−C . (11)

The offset parameter a can have values of 0 and 1/2.
Table 4 shows the errors relative to the basis set limit us-

ing either of the extrapolation Eqs. (9)–(11) in connection
with the basis sets in Table 1. For the uncontracted pc-n ba-
sis sets, Eq. (10) performs better than Eq. (9), with Eq. (11)
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Table 4 Average errors and standard deviations for total energies derived from three-point extrapolated results

Fitting function Eq. (9) Eq. (10) Eq. (11), a = 0 Eq. (11), a = 1/2
Data

Lmax 〈�E〉 σ 〈Cfit〉 〈�E〉 σ 〈Cfit〉 〈�E〉 σ 〈Cfit〉 〈�E〉 σ 〈Cfit〉
opt-pc-0,1,2 3 −5.0 6.5 1.9 2.0a 3.4a 6.5a −33.6 22.9 2.3 −24.2 17.4 3.3
opt-pc-1,2,3 4 −0.63 0.62 2.3 0.076 0.15 7.0 −1.84 1.54 5.2 −1.60 1.35 6.4
opt-pc-2,3,4 5 0.007 0.005 3.3 0.002 0.004 6.3 −0.005 0.007 11.2 −0.003 0.006 12.9
opt-pc-3,4,5 6 −0.0002 0.0006 2.7 −0.0006 0.0008 6.0 −0.001 0.001 11.9 −0.001 0.001 13.2
pc-0,1,2 3 −4.7 8.3 1.8 3.4a 4.5a 6.4a −37.8 28.3 2.2 −26.9 21.5 3.2
pc-1,2,3 4 −1.2 1.6 2.1 0.09 0.25 6.5 −3.5 4.0 4.7 −3.0 3.5 5.8
pc-2,3,4 5 0.024 0.014 3.1 0.015 0.011 6.0 −0.0004 0.01 10.6 0.003 0.01 12.2
pc-0c,1c,2c 3 −1.5 12.2 1.7 8.5a 8.0a 6.2a −42.8 36.9 2.1 −29.1 28.2 3.0
pc-1c,2c,3c 4 2.9 2.9 1.9 4.4 4.1 6.2 0.16 2.2 4.3 0.7 2.2 5.3
pc-2c,3c,4c 5 3.8 4.0 2.3 3.8 4.0 4.6 3.7 4.0 7.7 3.7 4.0 8.8
cc-pVDZ,TZ,QZ 4 −0.47 0.39 1.4 −152.9 166.1 5.7 −4.0 1.4 2.9 −3.2 1.1 3.6
cc-pVTZ,QZ,5Z 5 −0.15 0.33 1.5 0.04 0.6 11.0 −0.63 0.65 4.9 −0.56 0.60 5.6
cc-pVQZ,5Z,6Z 6 −0.001 0.03 1.7 −9.1 10.4 3.9 −0.06 0.06 7.1 −0.05 0.06 7.9
Ahlrichs-S,T,Q 4 −0.14 0.78 2.9 0.35 0.28 5.2 −1.7 2.0 7.0 −1.4 1.8 8.5

All values in milli-hartree relative to numerical HF data for the systems in Table 1
a Fitting using Ns = 10 for the pc-1 basis set for second-row systems
Data in italic exclude the seven triplet species in Table 1

being significantly worse, except for the extrapolation based
on pc-2,3,4 results. The contraction errors for the pc-nc basis
sets (Table 3) render these unsuitable for estimating the HF
limit. The performance for the opt-pc-n basis sets is only mar-
ginally better than the fixed exponent pc-n basis sets, again
showing that the use of exponents optimized by a density
functional method is not a major limitation. The mean error
of the extrapolated opt-pc-3,4,5 results based on Eq. (9) or
(10) in Table 4 is a few tenths of one micro-hartree, which is
at the limit of the accuracy of the reference data. For the cc-
pVXZ basis sets, Eq. (9) performs best, with Eq. (10) provid-
ing an unstable fitting. This is due to the use of the number of
s-functions as the main fitting parameter, and the non-uniform
variation between Lmax and Ns , as discussed below. Eq. (11)
with either of the offset values performs poorly and in most
cases leads to results that are worse than the unextrapolated
results.

The Eqs. (9)–(11) employ Lmax as a variable, which lead
to a slight ambiguity for systems having elements from differ-
ent rows in the periodic table. When hydrogen is present, the
maximum angular momentum function for hydrogen is one
less than for first- or second-row elements. This ambiguity is
the reason for the offset factor in Eq. (5), with half being a heu-
ristic compromise between 0 and 1. For the present systems,
there is little difference in the performance of Eq. (11) with
an offset of either 0 or 1/2, and no improvement is observed
if the hydrogen containing systems are omitted.

For Eq. (10), there is an additional ambiguity, since the
number of s-functions is used as an extrapolation parame-
ter. For the second-row elements, the fitting of the pc-0,1,2
results to Eq. (10) leads to multiple solutions, neither of which
provide reliable results. A stable fitting could be obtained by
using a value of 10 for Ns in the pc-1 basis set, rather than the
value of 11 from Table 2. This choice is at least partly moti-
vated by the basis set construction, since the 10th and 11th

s-function contributes to the 1s and 3s-orbitals, respectively,
and consequently have almost the same energy contribution.

For mixed first- and second-row systems, one has a choice
of using the Ns values from either the first- or second-row
elements (Table 2). For the pc-n basis sets, there is virtually
no difference between either choice, which is closely related
to the fact that the increment in Ns by each step up in Lmax
is almost the same for first- and second-row elements. Given
that the total energy primarily is determined by the elements
with highest atomic number, we recommend that the Ns value
for the heaviest element is used in the extrapolation for sys-
tems with elements from more than one row in the periodic
table, and this has been used for generating the data in Table 4.

For the pc-n basis sets, there is a close correlation between
Lmax and Ns , but this is not the case for the cc-pVXZ basis
sets, which results in instabilities when fitting to Eq. (10). For
the first-row elements, the number of s-functions increase by
two for X = T − 6, but for second-row elements, the incre-
ment is rather irregular (12, 15, 16, 20, 21 s-functions for
X = D − 6). Clearly Eq. (9) provides a much more stable
extrapolation procedure when used with cc-pVXZ data, and
it is also slightly better than Eq. (10) for extrapolation of the
data generated by the Ahlrichs basis sets.

From a practical point of view, any fitting function which
reliably can improve the results is useful, and we have con-
sidered whether Eqs. (9)–(11) could be turned into heuristic
fitting functions. Using the offset parameter a in Eq. (11) as a
tuning parameter for reproducing the basis set limiting value
is not a viable option, as no sensible value can be chosen
to provide a vanishing mean error. We have similarly con-
sidered choosing an effective power α for either Lmax or Ns

in Eq. (9) and Eq. (10) (i.e. exp(Lα
max) or exp(Nα

s )), but the
optimum α value depends significantly on the data set. The
standard deviation is furthermore insensitive to α, indicating
that the improvement is merely data fitting. We conclude that
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α values of 1 and 0.5 for Eq. (9) and Eq. (10), respectively,
are close to optimum, and the quality of the final results are
not particularly sensitive to the exact value used.

6 Two-point extrapolations

From the results in Table 3, it is seen that each step-up in basis
set quality improves the energies by almost an order of magni-
tude. A three-point extrapolation thus employs energies that
are more than two orders of magnitude removed from the
HF-limit. Alternatively, Eqs. (9)–(11) can be made into two-
point extrapolations by choosing a suitable fixed C value.
This, however, is only a viable approach if the C value is rel-
atively constant for a variety of systems and basis sets. A near
constant value for C furthermore indicates that the functional
form captures some of the physics behind the data, rather than
just being a mathematical fitting function. Table 4 shows that
the effective inverse power C in Eq. (11) varies significantly
with the basis set data, and the excellent results by extrap-
olation of the pc-2,3,4 data is most likely accidental. The
C value for Eq. (10), on the other hand has a near constant
value for the pc-n basis sets. The corresponding parameter
for Eq. (9) increases slightly with Lmax, but is clearly much
less sensitive to the data set than in Eq. (11).

Table 5 shows the results for two-point fittings for Eq. (9)
and Eq. (10) with suitable average C values for each basis
set chosen from the results in Table 4. We have also included
data for C = 5, a = 0 in Eq. (11), which then becomes equiv-
alent to Eq. (7), since this is the formula used in the Wn
methods [4]. For the pc-n basis sets, the simple two-point
extrapolation performs remarkably well, as anticipated from
the near-constant C value in the three point fittings in Table 4.
The mean error for the extrapolated values based on the pc-
0,1 results (i.e. using at most a polarized double zeta basis
set) is a remarkable 3 milli-hartree, although with a standard
deviation of 28 milli-hartree. The two-point extrapolation in
all cases provides results which are as accurate as the corre-
sponding three-point extrapolations for a given Lmax. Note
again that extrapolations based on the opt-pc-4,5 basis sets
provide results that are at the limit of the accuracy of the
reference data. Extrapolations using either of Eqs. (9), (10)
or (7) with the cc-pVXZ or Ahlrichs basis sets do not pro-
vide a systematic improvement, in agreement with previous
findings of Halkier et al [19].

7 Relative energies

While absolute energies are the ultimate test of the predic-
tive power of a given basis set and extrapolation method, the
main focus in most applications is on relative energies. For
the present systems, we have investigated the convergence for
the atomization energies of the systems in Table 1. Table 6
shows the raw calculated results as well as the results from
two- and three-point extrapolations of the total energies, and
Fig. 1 shows the logarithmic error depending on the number

Fig. 1 Logarithm of the average deviation (milli-hartree) for atomiza-
tion energies (Table 6) as a function of the number of contracted basis
functions for a second-row element.

of contracted basis functions for a second-row element. Note
that the opt-pc-n and pc-n results in Fig. 1 are actually gener-
ated using the uncontracted basis sets. Only Eq. (9) has been
used for the cc-pVXZ and Ahlrichs basis sets, while only
Eq. (10) has been used with the pc-n basis sets, since these
provide the best results in Tables 4 and 5. It can be noted
that 1 milli-hartree corresponds to 2.6 kJ/mol, i.e. predicting
molecular stabilities to within 1 kJ/mol requires errors well
below 0.4 milli-hartree in Table 6.

The atomization energy benefits from error cancellation
between the molecular and atomic energies, and is therefore
expected to converge faster to the basis set limit than the
total energy. The improvement relative to the errors for the
total energies in Table 3 approaches an order of magnitude
for the smaller basis set (pc-0, pc-1, cc-pVDZ, SVP), but is
only a factor of two for the larger basis sets. One difference,
however, is that the contracted pc-nc basis sets now provide
results of comparable accuracy as the uncontracted versions,
i.e. the contraction error of a few milli-hartrees is effectively
concentrated in the inner core orbitals and cancels out when
calculating atomization energies.

The various three-point extrapolation formulas provide
only marginal improvements of the atomization energies, and
a two-point extrapolation of the pc-n results using Eq. (9)
appears as stable as the corresponding three-point formula.
The most noticeable result is the two-point extrapolation of
the pc-0 and pc-1 results, which gives an order of magnitude
improvement, and provides a remarkable accuracy of a few
milli-hartree relative to the basis set limit, for a computa-
tional cost of a double-zeta basis set. The improvement by
extrapolation for the atomization energy is not as large as
expected, with the errors being only slightly smaller than for
the corresponding extrapolated total energies in Table 4. We
note again that extrapolation of the results obtained with the
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Table 5 Average errors and standard deviations for total energies derived from two-point extrapolated results

Fitting function Data Lmax Eq. (9)a Eq. (10)b Eq. (7)
〈�E〉 σ 〈�E〉 σ 〈�E〉 σ

opt-pc-0,1 2 30.5 16.9 −2.1 26.7 50.6 22.1
opt-pc-1,2 3 1.2 2.4 −2.8 4.9 −2.3 3.2
opt-pc-2,3 4 −0.26 0.10 0.0018 0.039 −1.6 0.6
opt-pc-3,4 5 −0.0029 0.0025 0.0026 0.0032 −0.096 0.053
opt-pc-4,5 6 −0.0004 0.0005 −0.0001 0.0004 −0.0099 0.0069
pc-0,1 2 36.4 19.3 3.0 27.7 57.4 24.8
pc-1,2 3 2.8 3.3 −1.5 5.2 −1.0 4.2
pc-2,3 4 −0.27 0.096 0.086 0.080 −2.0 0.7
pc-3,4 5 0.011 0.010 0.020 0.012 −0.14 0.08
cc-pVDZ,TZ 3 1.1 0.7 −5.6 14.7 5.5 2.3
cc-pVTZ,QZ 4 −0.06 0.24 −4.0 4.6 −0.25 0.20
cc-pVQZ,5Z 5 −0.11 0.21 0.11 0.32 −0.48 0.39
cc-pV5Z,6Z 6 0.42 0.16 −0.23 0.21 −0.13 0.05
Ahlrich-S,T 3 2.3 5.3 7.5 5.2 −15.2 5.4
Ahlrich-T,Q 4 0.16 0.36 0.66 0.27 −3.0 2.3

All values in milli-hartree relative to numerical HF data for the systems in Table 1
Data in italic exclude the seven triplet species in Table 1
aC = 2.5 for the pc-n and opt-n basis sets, C = 1.5 for cc-pVXZ and C = 2.9 for the Ahlrichs basis sets
bC = 6.3

Table 6 Average errors and standard deviations for calculated atomization energies

Lmax opt-pc-n pc-n pc-nc cc-pVXZ Ahlrichs

〈�E〉 σ 〈�E〉 σ 〈�E〉 σ 〈�E〉 σ 〈�E〉 σ

1 42.3 35.1 58.0 38.1 60.2 40.0
2 8.3 5.5 12.6 5.7 13.6 6.3 12.2 5.3 9.4 6.0
3 1.5 1.3 2.9 2.1 2.7 2.4 2.0 0.9 3.2 2.1
4 0.10 0.08 0.21 0.16 0.15 0.20 0.51 0.26 0.51 0.22
5 0.008 0.008 0.025 0.018 0.0002 0.05 0.19 0.09
6 0.0005 0.0004 0.055 0.028

xpol-1,2 2 −4.5 8.7 −1.8 7.5 −0.9 8.5
xpol-1,2,3 3 1.3 1.4 2.4 2.3 2.0 2.6
xpol-2,3 3 −2.7 4.5 −1.8 5.1 −2.3 5.4 −0.91 0.71 2.8 2.0
xpol-2,3,4 4 0.08 0.11 0.09 0.23 0.12 0.25 0.62 0.41 0.20 0.28
xpol-3,4 4 0.014 0.038 0.070 0.066 0.003 0.10 0.08 0.20 0.35 0.16
xpol-3,4,5 5 0.0017 0.0032 0.007 0.009 0.008 0.075 0.12 0.08
xpol-4,5 5 0.0023 0.0031 0.012 0.010 −0.014 0.058 0.10 0.06
xpol-4,5,6 6 −0.0004 0.0008 0.005 0.025
xpol-5,6 6 −0.00009 0.0004 0.19 0.09

All values in milli-hartree relative to numerical HF data for the systems in Table 1
xpol-n,m indicates a two-point extrapolated result based on L = n and m results, xpol-n,m,l indicates a three point extrapolated result based on
L = n, m and l results
Extrapolation for the opt-pc-n and pc-n basis set are done using Eq. (10) with C = 6.3 for two-point extrapolations. Extrapolation for the cc-pVXZ
and Ahlrichs basis sets are done using Eq. (9) with C = 1.5 and 2.9, respectively for two-point extrapolations
Data in italic exclude the seven triplet species in Table 1

cc-pVXZ basis sets is not very successful, and sub-milli-har-
tree accuracy is difficult to obtain with these basis sets. For
the pc-n basis sets, however, the extrapolation in all cases
leads to an improvement, and display an exponential con-
vergence towards the basis set limit. The opt-pc-5 basis set
again provides results of an accuracy which rivals the refer-
ence data.

8 Summary

We have shown that the polarization-consistent basis sets in
their uncontracted forms can be used for estimating the Har-
tree–Fock basis set limit to within a few micro-hartree accu-

racy. A comparison with results from fully optimized basis
sets indicate that the pc-n basis sets, although optimized for
density functional calculations, are also near optimum for
Hartree–Fock calculations. For absolute energies, the uncon-
tracted forms should be used, but for atomization energies,
the contracted version provides results as accurate as the un-
contracted forms. The pc-n basis sets tend to be more efficient
than the cc-pVXZ basis sets, especially if sub-milli-hartree
accuracy is desired.

It is shown that total energies can be improved by an expo-
nential extrapolation, while extrapolation based on an inverse
power of the highest angular momentum included in the basis
set is inferior. Based on the present results, we recommend
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the use of Eq. (10) with the pc-n basis sets and Eq. (9) with
the cc-pVXZ and Ahlrichs-type basis sets. Both of these for-
mulae are three-point extrapolation schemes, but two-point
schemes derived by choosing suitable effective C-constants
can be used with essentially no loss of accuracy, at least for
the present data. Given that real applications will cover a
more diverse set of molecules, we recommend a three-point
procedure when results from three basis sets are available. If
only results from the two lowest quality basis sets are avail-
able, a two-point extrapolation is strongly recommended. It
is noted that extrapolation of the results from unpolarized and
polarized double-zeta type basis sets (pc-0 and pc-1) can give
results within a few milli-hartree of the basis set limit. Unfor-
tunately the extrapolation of total energies does not appear
to significantly improve the results for atomization energies.
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